Inhalt
Mathe
\[\vec{u}=\begin{pmatrix} 2 \\ 3\end{pmatrix}\]
\[\vert\vec{u}\vert=\begin{pmatrix} 2 \\ 3\end{pmatrix}\]
\[g\colon\; \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}\ + \mu \begin{pmatrix} 3 \\ 1 \\ 7 \end{pmatrix}\]
\begin{align} a_1& =b_1+c_1\\ a_2& =b_2+c_2-d_2+e_2 + f^3+g^{x+i}\\ E& =m \cdot c^2\\ x& =\sqrt{a-b \over {c + d}}\end{align}
\[x = \sqrt{a-b \over {c + d}}\]
\[{a^2 + 4}\over {5 – b^5}\]
\[x+1\over\sqrt{1-x^2}\]
\[x_{1/2} = {-{p \over 2}} \pm {\sqrt {{p^2 \over 4}-q}}\]
\[\frac{q^2}{2}\]Das ist text \(\vec{u}\) der gefällt
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are \[x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\] \[x_2^3\] Leerzeichen mit Tilde: ~ oder Backslash + Leertaste \[a \circ b\] \[a \times b\] \[{\color{dodgerblue}4}\ x_1\]